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ABSTRACT

This paper deals with solutions U(xl,...,xn,t) - u(x,t) of nonlinear

partial differential equations of the form E - utt- &u - F'(ut)utt for

prescribed initial values u(x,O) - Eo(x), ut(x,O) - e*(x) of compact

support. Here the assumptions F(0) - F'(0) - 0, F" > 0, F' 4 q < 1 ensure

hyperbolicity of the equation. It is known that for n > 3 smooth solutions

exist for x e Kn  and all t > 0, provided e is sufficiently small. It is

shown here that no such "global" solutions need to exist for arbitrarily small

6, when n = 2 or 3. More precisely, if + and # satisfy certain

inequalities there exist positive constants A,B such that no classical

solution exists for t > AeB/C when n - 3 and for t > A/c2 when n - 2.

These upper bounds for the "life span" of u are optimal. For the proof one

shows that certain plane integrals of u become larger for large t than is

consistent with the value of the total energy derived from the initial data.
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SIGNIFICANCE AND EXPLANATION

Solutions of nonlinear hyperbolic partial differential equations often

develop singularities spontaneously. Physically this phenomenon corresponds

to the formation of shocks in nonlinear waves. One is confronted with the
questions: What are the factors contributing to this blow-up of

solutions? How long does it take for blow-up to develop (i.e. what is the

)-life span -T of the solution)? What goes on precisely during blow-up?

There is no general answer covering the great variety of situations

encountered. A critical role certainly is played by thesiz of the initial

disturbance that gives rise to the wave solution, and by the number of

dimensions of the space in which the wave propagates. One finds that larger

disturbances are more likely to result in shocks, and that, on the other hand,

with increased dimension there are more possibilities for the wave to spread

out and to decay, thus counteracting the formation of shocks.

The-prfufle1t4iwe t1&Uo& is concerned with a special type of second

order nonlinear wave equation, whose behavior can be expected to be typical

for a large class of equations occurring in applications, e.g. in the

propagation of waves of finite amplitude in elastic materials. Recent results

of S. Klainerman show that no blow-up at all occurs (i.e. thatT ) if

the number of space dimensions exceeds 3 and the size e of the init 1

disturbance is sufficiently small. Moreover in 3 dimensions T, if not.

infinite, is extremely large, namely of exponential order in I/C. The

present paper deals with 2 and 3 dimensions. It shows that in 3 dimensions

T actually can be finite and of exponential order in I/e, while in two

dimensions (a case studied rarely up to now) T need not exceed the much

smaller order 1I/2. It is known that T cannot possibly be of still smaller

order, so that the results given here are optimal.

LL

The responsibility for the wording and views expressed in this descriptive -: L
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NON-EXISTENCE OF GLOBAL SOLUTIONS OF 0 u F(U t ) IN TWO
at

AND THREE SPACE DIMENSIONS

Fritz John

This paper deals with solutions u(x1,...,xnit) u(x,t) of certain nonlinear p
hyperbolic equations of the form

n

utt- a & alk(' - 0 . (1)
i,k- 1 

x k

(Here u' stands for the set of first partial derivatives of u). Equations or systems

of equations of type (1) describe the propagation of waves in a hyperelastic material.

Solutions u corresponding to initial conditions

u(x,0) - f(x); ut(x,0) - g(x) for x e 7P (2)

may or may not exist "globally", i.e. for all t ; 0. The "life-span" T of a solution

is the largest value such that a C
2-solution of (1), (2) exists for x e Rn , 0 4 t < T.

Global existence corresponds to T - , "blow-up in finite time" to T < . -

S. Klainerman (1], (21 proved that T = for "sufficiently small" initial data, in

case the number n of space dimensions exceeds 3. For initial data of the form

u(x,0) - CO(x), ut(x,0) - C(x) (3)

with a constant c > 0, smallness can be measured conveniently by the size of c for

fixed M,4'. For n - 3 (see Klainerman [2], [3] and John and Klainerman (4]) we only get

"almost global" existence of solutions in the sense that T = T(e) has a lower bound of

the form

T > AeB/£ (4) L .

with positive constants A,B depending on ,,.

Sponsored by the United States Army under Contract No. DAAG29-S0-C-0041, and the National
Science Foundation under Grant No. DMS-8401511.
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This behavior for higher n constrasts with the case n - 1. There it is known (me

Lax [17], John [18]) that T < - for non-trivial sufficiently small data of compact

support, provided the equation is "genuinely nonlinear". More precisely T behaves then

like A/c for small c. By imbedding, this result for n - 1 implies thac there exist

for any n "large" data* for which T <. That actually T < - for n - 3 and some

arbitrarily small data was shown by F. John [5], at least for some equations. An example

ia the "model" equation

Ou - utt - Au - F'(ut)utt (5)

where

F(O) - F'(0) - 0; F"(s) > c > 0 for all a • (6)

It is shown in [5] that here T < * for data (2) of compact support, provided the data

satisfy the inequality

K- f (g(x) - F(g(x))i dx 0 (7)
3

(with dx - dxldx 2dx3 ). More precisely for data of compact support of type (3) for which

f *(x)dx > 0 (8)

R3

one has

T < A exp(B/E4 ) 4 (9)

Similar results for other equations with spherical symmetry were obtained by Sideris [6].

These results for n - 3 have certain drawbacks. As a consequence of assumption (6)

equation (5) becomes elliptic for ut > 1/c. This raises the question if blow-up is just

due to this feature, and if it would also occur in equations that are hyperbolic for all

arguments " A second undesirable feature is the inequality restriction (7)

Conditions for non-existence of global solutions of systems of conservation laws for

sufficiently large data and any n are given by Sideris (19].

t Equation (5) is hyperbolic iff F'(ut) < 1.*

-2-
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imposed on the data, and a third is the fact that the upper bound (9) for T is

unrealistically large.

If we restrict ourselves to radial solutions u of (5), (those depending only on

lxi and t), the problem becomes essentially one-dimensional and the analysis

simplifies, as is shown in [7]. All that matters then for solutions with small initial

data is the behavior of F(s) for small s, so that (6) can be replaced by the weaker

assumptions

F(0) = F'(0) - 0, F"(0) > 0 ( (10)

For small initial data of type (3) no inequality restriction on #(x),*(x) is needed, and

blow-up for non-trivial data of compact support occurs at a finite time T with an upper

bound of the form

T < A*a •
B * / £  11

for small e. This bound is optimal in view of the lower bound (4).*

No analogous results for general non-radial solutions u of (5) have been

established. The present paper extends the results of [5] to equations (5) that are

hyperbolic for all ut • It proves blow-up in finite time with the optimal bound (11) -

for T when n - 3, but only for data that are subject to a slightly generalized

inequality (7). The paper also derives results for n - 2 with an inequality

T < A*/:
2  

(12)

taking the place of (11). The essential difference in the proofs is that here we use

plane integrals instead of the spherical means used in (5]. This facilitates a unified

treatment of the cases n - 2,3. The everywhere hyperbolic character of the differential

For analogous results for radial elastic waves see [16].
Thl estimate (12) again is optimal, that is T can be shown to have a lower bound

AC . This follows by a slight modification of the arguments used in (8] when n > 3.
One only has to observe that for 2 n - 2 the right hand side of formula (98), p. 555 of
[8] stays bounded for To  ( ). I

--



1.

equation somewhat complicates the argument compared with (5], and makes it necessary to

appeal to the energy integral associated with (5).

We assume that our function F(s), is of class C
3
(R) and satisfies

F(O) - F'(O) 0 F"(s) > 0, 1"(s) 4 q < 1 for all a (13)

so that equation (5) is hyperbolic for all ut. In what follows n will always have the

values 2 or 3. We prescribe initial conditions

u(x,O) = f(x) - 64(x)l ut(x,O) - g(x) = e$(x) for x e se (14)

with c > 0. The data shall have compact support, say

f(x) - g(x) - O(x) = #(x) - 0 for IxI > R • (15)

We introduce

h(x) - g(x) - F(g(x)) (16)

and set

P K - h(x)dx (17a)

L(E,s) f [f(x) + (x*E + s)h(x)) dx for E e Sn-i, s e a (17b)
x.E>-s

A(E,s) " f (#(x) + (x*C + s)#(xjJ dx for C e O
n
-1, a e t . (17c)

x*E>-s

Here dx dxl...dxn, x.- Xl= 1 + + Xn E, and S
n
-1 denotes the unit sphere in n-

space. Under the assumptions (13), (15) we have

L(Es) - 0 for s < -R (18a)

L(,s) - f [f(x) + (x*C)h(x)j dx + Ks for • > R (18b)
an i

2
L(C,S) CX(E,s) + O(C

2
) for fixed *, and small • (18c)

THRORK4. Let n - 2 or 3. Let u(x,t) be a C
2
-solution of (5) for x e YP, 0 4 t < T

with initial data (14) satisfying (15). Then T < - if either

L(&,s) > 0 for some & e Sn-l , a e R (19a)

-4-
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orK )0 0, u it 0 . 9b )

More precisely, if

X(E,s) > 0 for some n-es~1, a e R (19c)

flthen there exist positive ADB (depending on *,F) such that for all sufficiently

small e (11) holds when n - 3 and (12) holds when n - 2.

Corollary. Let v(x,t) for n -2,3 be a nontrivial solution of class C 3  of the

nonlinear equation

Ov -vtt -Av - (vtt) for x S I, 0 4t <T (20)

where F satisfies (13). Let v have initial values v(x,0) and vt(x,O) of compact

support. Then T < -

Proof of the Corollary. The function u -vt is a C
2-solution of (5) for which

u~x,0) - vt(x,0) and

h~x) - Ut(X,O) - F(ut(X,O)) -vtt(x,O) - ?(vtt(x,O)) - Av(x,0)

have compact support. Then ut~x,O) also has compact support, since by (13)

is - FWsI If 0J( - F'(z))dzl ), (1 - q)isI ' 0 for a 0
0

Moreover here

K =f h(x) dx - f hv(x,O) dx 0.

30l f

Applying the Theorem for T = yields U(x,t) - vt(x,t) 0. Then v(x,t) =v(x,0) and

by (20) Av(x,0) - 0, which implies v(x,0) - 0, since v(x,0) has compact support. it

follow that v(x,t) E0.

'Observe that K > 0 implies by (18b) that (19a) holds for all sufficiently large a
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Proof of the Theorem. The proof uses the common type of argument that might be called

"method of momentsO. (See e.g. references (10].[11),[12],[13],[14],[15],[19].) A p

differential inequality is established for a certain "moment" (a functional in integral

form formed from the solution). On the basis of this inequality the moment is shown to

grow with time in a manner incompatible with continued existence. By this method one

proves non-existence of a global solution, without, however, gaining any insight into the

process of singularity formation constituting blow-up. The actual blow-up involving

possibly only higher derivatives, quite likely, takes place some time before the moments

in question show any drastic behavior. The method of moments then just confirms that the

solution (in the strict sense) has disintegrated after a finite time, without establishing

the cause of death.

First of all u(x,t) is of compact support in x. More precisely for data

satisfying (15) we have

u(x,t) - 0 for IxI > R + t (21)

(see [51, p. 49). Introducing

i t -

v(x,t) - J u(x,s) ds for x e YP, 0 ( t < T (22)
0

we have vt - u and

v(x,O) - 0, vt(x,O) - f(x)

v(x,t) - 0 for lxi > R + t (23)

Ov(x,t) - F(vtt(x,t)) + h(x) for x e OP , 
0 4 t < T (24)

with h(x) defined by (16). We associate with the function v(x,t) the "plane integral"

v*(r,t) f v(x,t) dS for r e R, 0 4 t < T (25)

where dS - dx1 ...dxn/dxI, that is dS = dx2 when n - 2 and dS = dx2dx3 when n = 3.

Then



I-

v*(rt) - 0 for Irl > R + t (26a)

v*(r,0) - 0

vt(r,O) - f*(r) f I f(x) dS (26b)

vtt(r,t) - vr(r,t) - F*(r,t) + h*(r) (26c) 5 -

where we define

F*(r,t) - Fltt(x,t)) dS (26d)
Xl-r

h*(r) = f h(x) dS • 
(26e)

x 1 r

It follows that

v*(r,t) -v (r,t) + f J F*(P,T) dpdT for r e R, 0 ( t < T (27a)

Tr,t

where Trt is the "characteristic" triangle with vertices (r,t),(r - t,O),(r + t,O)

and

1r+t
Vj r,t) r ( f*(p) + (t - Ir PI)h*(p)] d• (27b)

r-t

Since by (15), (16)

f*(p) - h*(P) 0 for 101 > R (28)

we have

I 1
v (r,t} = j ff*(p) + (t - r + p)h*(p)] do M(t - r) (29)

r-t m

for r > R, t > 0, where in the notation of (17b)

-7

-7-
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R
W(z) - f [f*(P) + (a + p)h*(p)] do

-Z

f ff(x) + (z + X1 )h(x)] dx - L( I ) (30)
X >-Z

with F1 denoting the unit vector in the xj-direction:

I = (1,0,...,0) 
(31)

Our assumptions (15) on F imply that

F(z) > 0 for X o 0 (32a)

and that there exist positive constants a,b such that
V z() az2  for Izf < b (32b)

Then by (15)

-- ) (b) ;ab for z b (32c)

ab 4 q < I (32d)

Since F(z) is convex and vtt(xt) has its support in 1xI < R + t we have fro.

Jensen's inequality applied to (26d)
F*a}(r,t) F( t(x,t) d8)

c~rt) c(r. t) xr
v,

vt(r,t)

= F( €(r,t) ) 0 (33a)

for r < t + R. Here

c(r,t) = J dS = y((t + R)
2 

- r
2
) (33b)

xlmr

Ixl<t+R

with y(z) defined by

YWs) - 0 for z < 0, Y(z) -2z 
1  

for z > 0 when n = 2 (33c)

y(z) = 0 for z < 0, y(z) 
= wz for z ) 0 when n - 3 (33d)

Blow-up will be established by deriving an integral inequality for v*(rt) along

lines t - r = const. = z. In what follows let z be a fixed number with

z > -R (34a)

-8-_
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Define

P(r) = v'(r,z + r) for R 4 r ( T - z • (34b)

By (27a), (29)

P(r) = M(z) + . J F*(p,T) dpdT for R • r < T - z • (34c)
T Sr, z+r

For R r r < T - z we have TrI z+rI C Trz+r and

P(r) = P(rI ) + f F*(Pr) dPdr (34d)
2r

with r - Tr,z+r\Trl,z+r I . Set

r2 - z + 2r, . (34e)

Then for r2 < r the region F contains the parallelogram

r 2 < p < r, P - R < T < p + z (34f)

and it follows from (34d), (33a) that

r p+z v* (P,T)
P(r) > P(r ) + d f J C(PT)FL tt d (34g)r2  p-R p

for r2 < r < T - Z.

Since by (26a) v*(p,T) = 0 for T < p - R, we have for R < p < T - z

0+z
P(P) = v*(p,z + p) -f (p + z - T)v*t(p,T) dr . (35a)

p-R

Then by Jensen's inequality and the convexity of F

. p~). p+z V* (p,T)C(P)F(p , v (p + z - r)c(p,T)FL tt ) dT (35b)

C() p-R CPT

where

-9-
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P+5
C(p) - J (p + £ - r)C(pT) dr * (35c)

p-R

(35b) yields

) +z (p,T)C()(()4(1 + R) ] PTF dT (35 d)"
F) -p-R C(P,-)

Substituting into (34g) gives the desired inequality for P:

P(r) ) P(r1) + r r f(P(P) dp for r2 < r < T -r (35e

1+ 2 ~ p r ri+- C( T -*()
2

Lemma 1. Let there exist rl,t 1 ,k with

r1 ) R, 0 < t1 < T, v*(r1,t1 ) = k > 0 • (36)

Then T <.

Proof of Lemma 1. Set z - t, - ri. Then z > -R by (26a). Define Pr 2  as in (34b),

(34e). Then

P(r1 ) - k > 0 ( C37a)

We compare P(r) with the solution p(r) of the integral equation

p1r) - Pro) 2 z+R C(P)) dp for r ) r2  (37b)
r2

pr)- C~r) r)'
z -+R) ,C(r) F p(r2 ) - P(r 1 ) (37c)

Since p(r) > 0 by (37a), (32a), and F is increasing for positive arguments by (13), we

have

P(r) > p(r) for r2 < r < T - z (37d)

by Gronwall's lemma.

The inequalities (32b,c) furnish different lower bounds for F(p(p)/C(p)) as

p/C > b or < b. Let p ) r2 be a value for which

-10-
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) b , (36a)
C(p)

Then by (35c), (32c)

cp) I F(o}/ p-

dp 2(z + R) C(P) " 2(P)

p(p) ab COW_
C(p) 2(v+R) Cp)

Here by (35c), (33b)

P+z +R
2  2

C(p) f f (P + z - r)Y((T -R) 21dr

p-R

( f Z( + R - a)y(0(o + 2p)) W (38b)

0

z+R 2ay' (a(a + 20)) <C()

cI(9) - j (z + R - o)y(o(G + y(oa( + 2p)) p
0

since by (33c,d)
Y(o + 20)) n- <

y(a(a + 2P)) 20(o + 2P) 2up

Thus

dp(p)/C(p). > 0 for p , 2(z + R)

do ab

Set
r3 = !,axlr 2, 2.z+ R)) ( 138c)

Then

P(P) > b, p ) r3  
(38d)

C(p) 
p

implies that

"(r) . b for r > p • (38e)

C(r)

Let now r be such that

r3  r < Tz, p(p) 4 bC(p) for r3 < p < r (39a) m
Then by (32b), (37c), (39a)

-11-
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P 2(z + R)C(p) for r 3 < P < r (39b)

1 1 1 1 _- 1 a ___

p(r2 3 ) p(r3) p(r) 2(z + R)r CP)
3

Here by (38b), (33cwd)

C(p) C (z + R)
2
y((z + R)(z + R + 2p)) 4 w(C + R) (n+3)/2(3p)(n

-
1)/2 (39c)

since by (38c), (32d)

2p • 1br + 2p C 3p for r 9 p
z+R2 2(ab 3 +P3 3

f dp 1 (Z + R) -(n+3)/2 r 0 (1-n)/2d (39d)S ( ) 3w +p• 3d
r3  r3

We define r4 by

r4
1 a r 4

k (- -(+R) f P)(3e
r3

Then

P(r) P p(r) bC(r) for r4 < r < T -z (39f)

We have by (35a)

r+z
P(r) - f 4S f (z + r - t)vtt(xt) dt

Xl-r r-R

Hence

P2 (r) c i f V2(.,t) dSdt
Xltt

r-R<t<r+z

where

-12-



- f ( + r -t) 2 dSdt

Sr,lxl<t+R

r-R<t<r+z

r+z
4 (z + R) f (z + r - t)c(r,t) dt - (z + R)C(r)

r-R

It follows from (39f) that for r4 < r < T - -

(2r) <v
2 t(xt) dSdt (399)b2~)<C-- ) t z+R 3g

r-R<t<r+z P.

Here by (38b)

Z+R
C(r) z+R (z + R - a)y(2r ) doU

0

z+R (n 1/ (n-)/
2 (a + R - 0)(20) (n )/2(n )/2dO

0

(z + R)(n+
3
)/

2
r(n-

1
)/

2  (39h)

let now p be a number with r4 < p < T - 2z - R so that

r4 < r < T - z for p < r < P + z + R

Integrating (39g) with respect to r from p to p + z + R and using (39h) we find that

2 3/ n2)/2 2
b (z + R)(n+3)/2P(n

2 } / 2 
( J vtt(x,t) dxdt
P<XI<p+z+R

X l-R<t<x1 +z

f vtt(x,t) dxdt (39i)
p-Rt<p+2z+R

Introducing

a

G(s) - 2 f zr'(z) dz (40a)

0

-13-
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C

we have associated with (5) the "conservation of energy" relation
1f [u2 Gut) (Vu)

2  
e

I ~ru -Gu~ +(V) dx -const.

(g2 _ G(g) + (Vf)2 1 dx (40b)

Here, because of assumptions (13)

G(s) (qs 2  8 2 for all e R. (40c)

Thus

v~t(xt) dx-J ut(x,t) 4x 4 * for 0 t < T. (40d)

It follows from (391) that

I " q b2 (s + R)(n+l)/2p(n-I)/ 2  3 for r4 < p < T -2z- R (40c)
6

Consequently either

T- 2z - R < r4  (41a)

or

1 " q b2
(z + R)(n+l)/

2 (T - 2z - R)(n-l)/2 < v (41b)
6

holds. In either case T < -, proving the lema.

Lem 2. Let there exist e sP-n' a e I such that

k - 2L(CS) > 0 . (42a)

Then T <. More precisely there exist positive constants a,B only depending on the -.

choice of F such that

T (s + R) Max[expt + when n - 3 (42b)
k (a + R) 3

s+16 ~2
T < ale + R) ax[I + ( + R) when n2 (42c)k

2  
7(--7741we -2. 4C

k (as+R)

Corollary. For initial data of type (14) and A(E,s) > 0 there exist positive

constants A*,B' depending on *,*,F such that for all sufficiently small £ > 0

relation (11) holds when n - 3 and (12) when n - 2.

-14-



Proof of the Corollary. For fixed *,*we have using (13) that

kc - L(C.s) - CA(9.6) + Oct 2), B - 0(5 ) for small C > 0. Then (11), (12) follow

imediately from (42bc).

Proof of Loama 2. By (18a) a > -R. Since equation (5) is invariant under rigid motions,

we can bring about that the C in (42a) is the unit vector 1 defined in (31). Then

(29), (30) yield

I
vo(R,s + R) - M(u) - k > 0 , (43a)

Thus (36) holds with

r, 0 R, tl - + R (43b)

It follows from (34e), (38c), (32d) that here

2(s + R)r2  a + 2R, r 3  ab (43c)

Using the estimate (39c) for C(p) we find from (39e) that

r4 < s exp[6W("a+ R) ] when n 3 (43d)

r4 4a+ + 6, (8 + R) when n 2 (43e)
ab 42 k2

Thus (41a) implies that

T V R) exp['W~ 5  R)4 1 when n -3 (43f)

T < 6(s (a + R) when n - 2 . (43g)
ab 2k2

On the other hand (41b) leads to

T < 2(s + R) + 2 when n 3 (44a)
(1 - qlb 2( + R)

2

363_2

T < 2(s + R) + ( 2 
2  

+ when n -2 • (44b)

-q)20 (x- + I)
3

This establishes (42b,c) and proves the lemma.
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Lema 3. X -0 implies that either T < or u 0.

Corollary. Completion of the proof of the Theorea.

Proof of Leuma 3. Assume that T -. for any fixed a > -R define P(r) by (34b)

for r r1 R. Then

P(r) 4 0 (4a)

by roma 1. The representation (34c) for P combined with F* ) 0 shows that Pr) is

non-decreasing in r for r > R. Hence

8 , h J F*(P,T) dPdT - -K(s) + US P(r) (45b)

.Tr ,z+r

exists, and

0 ( 6 4 -K(z) • (45c)

If here

6 + X(M) -"a 4 0

it would follow that

P(P)(-a(O for Pal. (454)

There exists a p* such that

p* ) r2 s + 2R, -b < -
< 0 for pp.

C(P)

By (32b) then
2

r(--- -P ) for P > P• (4s)
* C(PT

Using (35e), (39c) we find that

P(r) ; P(R) +_ .2 .+
2 *C(P) z + R

0P(R) + 3(n/
2
am

2  
+ R) (n+S)/2 r P(1-n)/2 60

P*

But this implies P(r) > 0 for all sufficiently large r, contrary to (45a).

-16-



0

Hence

f 7*(pT) dpdT -x(s) for a -.
dO<T<Z+p

It follow from (30), (18b) and K - 0 that

S V(p,T) 8pd - 0 for R < s1 < 22
31+P<T<s2 +P

Consequently

re(p,r) - 0 for T > p + R, T > 0

and thus by (26d), (32a)

ut(x,t) - vtt(x,t) - 0 for t > x, + R, t > 0 • (46a)

Using the spherical symmetry of equation (5) and of X we deduce from (46a) that

more generally

ut(x,t) -0 for t > x + R with any C e 8n 'l ,  t > 0

But then

ut(x,t) - 0 for t > R - lxI, t > 0

and in particular

ut(xt) - 0 for t > R, and all x e in .

It follows from (5) that

hu(x,t) - 0 for t > R, x e in

and then from (21) that

u(x,t) - 0 for t > R, x e n •

The uniqueness theorem for equation (5), (see (5], p. 49) then yields that also

u(x,t) - 0 for 0 t < T, x e e,

completing the proof of Lemma 3.

This identity holds whenever T -, regardless of the value of X,

-17-
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